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Regularity and chaos in interacting two-body systems
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We study classical and quantum chaos for two interacting particles on the plane. This is the simplest
nontrivial case which sheds light on chaos in interacting many-body systems. The system consists of a con-
fining one-body potential, assumed to be a deformed harmonic oscillator, and a two-body interaction of
Coulomb type. In general, the dynamics is mixed with regular and chaotic trajectories. The relative roles of the
one-body field and the two-body interaction are investigated. Chaos sets in as the strength of the two-body
interaction increases. However, the degree of chaoticity strongly depends on the shape of the one-body poten-
tial and, for some shapes of the harmonic oscillator, the dynamics remains regular for all values of the
two-body interaction. Scaling properties are found for the classical as well as for the quantum mechanical
problem.
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I. INTRODUCTION noninteracting. By introducing a two-body interaction be-
] _ tween the particles, we may study the role of this interaction
The quantum mechanical correspondence to classicgh the onset of chaos. The two-body interaction is assumed to
chaos, quantum chaos, is well studied for one-body systemge of Coulomb type, where we control the strength of the
such as billiard systems, the hydrogen atom in strong magnteraction by a parameter. Also the role of the one-body
netic fields, etc.; see, e.g., Refd-5]. In the corresponding field may be studied, such as for example, how will the dy-
guantum system, classical chaos is revealed by the fluctu@amics of the two-body system depend on the shape of the
tion properties of energies and wave functi¢fs The con-  oscillator.
nection between classical and quantum chaos is thus, from a There is a wide literature on studies of chaotic properties
practical point of view, rather well understo§d]. of two-body system§10-13. In Ref.[13], the origin for the
Systems consisting of many interacting particles, such akregularity of quantum spectrum is considered for two par-
atomic nuclei, quantum dots, and most atoms and molecule§¢cles interacting through short-range potentials. The motion
often show spectral fluctuation properties which coincide®f two charged particles in a billiard is studied in REf4].
with those of quantum chaotic systeiigs9]. Although quan- Furjhermore, there is an attempt to investigate yveakly inter-
tum chaos is likely to be the reason for those fluctuatior2Cting two-body systems in the semiclassical limit by con-
properties in systems with many degrees of freedom, there frUcting a trace formulfl5-17. In Refs.[18-20, the quan-
no proof for such a conclusion. Moreover, in many-bodytum spectrum is calculated for two-electron anisotropic
systems mutual interactions and quantum statistics of palq_uantum dots. In these articles a general analysis of the clas-

. : . ._sical phase space and of the fluctuation properties of the
ticles are expected to play an important role. From this pomgnergg levels IF; made at different deformatignspof the quan-
of view, it is difficult to determine the key mechanism gen-

o A . tum dot. In particular, a peculiarity of the classical dynamics
erating irregularity in such systems. If several particles are, d of the corresponding quantum mechanical spectrum of

qonfined by a 0”‘?"0_0‘?'3/ field, the dynamics Qf the One'bOdXhe system was found at integer frequency ratios of the de-
f'elq governs the.|nd|V|duaI. motion of the partlcles. AN INter- t5-med harmonic oscillator. On the other hand, quantitative
esting question s how th.'s IS chang_ed i t.he particles ar‘?:iescriptions of the classical chaoticity and its dependence on
|anuenced by a two-body interaction in add|t|pn to the.on?'both deformation and excitation energy of the system, scal-
body field. Can, for example, a system of particles moving i,y oherties of the classical and quantum mechanical

a regular potential show chaotic motion due to the two-body 5 miitonians have not been considered in these articles.

Interaction’ . . . Such questions, in our opinion, are important for the inves-
To study the combined role of the one-body interactionqsion of the appearance of the classical and quantum chaos

and the two-body interaction in many—body systems, we sh_al nd will be considered in detail in our paper.

concentrate on the simplest nontrivial case, namely, the in- ', ge¢ || we formulate the general classical problem of

teracting two-body system. Specifically, we consider tW.Omotion of many mutually interacting particles confined by a

|der)t|cal partlcle_s n a two—@mgnsmnal dgformed harmon'cone—body potential. Specifically, we consider two identical
oscillator potential. The motion is regular if the particles are

charged particles in the field of the two-dimensional de-
formed harmonic oscillator, interacting via a scaled Coulomb
force. By smoothly turning on the strength of the two-body

*Electronic address: Sergey.Radionov@matfys.lth.se interaction, we can study how chaotic motion sets in for the
"Electronic address: Sven.Aberg@matfys.Ith.se initially regular dynamics. Using center-of-mass coordinates
*Electronic address: Thomas.Guhr@matfys.lth.se it becomes possible to consider independently the motion of
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the center of mass and relative subsystems. We show how thel, 2, stand for position and momentum vectors of the par-

two-body Hamiltonian can be scaled, thus reducing the numticles, and(|r,-r,|) is the two-body interaction. The cor-

ber of independent variables in the problem. responding phase space is eight dimensional. Regular dy-
Section Il is devoted to the quantum mechanical maninamics requires the existence of four constants of motion. As

festation of the corresponding classical mixed dynamics. Ifhe interaction contains a purely distance dependent part, it is
the quantum case we also use the center-of-mass coordinat@giyral to introduce center-of-mass coordinat@s(r,

leading to a separation of the excitation spectra of the cente+rr2)/2 r=r,—r, whereR andr are the center-of-mass and

of mass and relative subsystems. Scaling properties of the, - e yectors, respectively. The Hamiltoniahnow sepa-
gquantum mechanical two-body Hamiltonian are also studied, _ ; Lo
rates,H="Hg+™H,, into the center-of-mass Hamiltonian

By performing level statistical analysis, we quantify the de-
gree of quantum chaos of the quantum spectrum. The chao- pz p2 1
ticity of the classical phase space is compared to a fitting Hr= et T i
parameter characterizing the irregularity of the quantum 2M 2M 2
spectrum(Brody parameter

Finally, a summary of the main results is given in Sec. IV.

1
M w2X? + Engvz 2)

and the relative Hamiltonian

2 2
1 1
Il. CLASSICAL CASE =P By 2 e “paly? + W), (3)
2u 2p 2 2

After setting up the model in Sec. Il A, we discuss scaling

properties in Sec. Il B. The features of the effective potentialynerem =2m andu=m/2 are the total and the reduced mass
are investigated in Sec. Il C. In Sec. II D, Poincaré surfacegf two identical particles. This advantageous separation is
of section are worked out. The dynamics depends on thgye to the harmonic approximation of the external confining
one-body as well as on the two-body interaction. The influyotential. The inclusion of higher than second order terms in
ence of the deformation of the confining harmonic osciIIatorexpansiOn of the external potential will, in general, destroy
potential is studied in Sec. Il E, and that of the scaled energyhis feature.
related to the strength of the two-body interaction in Sec. The center-of-mass and the relative motion of the system
IIF. (1) are uncoupled. As can be seen from E2), the center-

A The model of-mass dynamics is regular since the Hamiltondp is

] ] ] ] . separable with respect to théandY axes. Obviously, the
We consider a system of many identical particles MOViNGspergies

in an external confining potential and interacting through

two-body central forces. A harmonic oscillator type of con- a 202 B 22

fining potential with frequencies,, wy, andw, can be ob- Ex= SMapX and &y= SMayY (4)
tained by expanding the external confining potential around

its minimum up to the second order, which is widely used inare the two constants of motion for the center-of-mass sub-
molecular physics and in the physics of quantum dots. system.

To gain insight into certain general features of such a Thus, we can now focus exclusively on the relative sub-
system, we consider the simplest nontrivial case, namelyystem whose phase space has half of the dimension of the
two identical interacting particles on a plane. We notice thabriginal one. The energy in this subsystem is a constant of
the motion of two interacting particles in one dimension ismotion as well. To see whether or not a second constant of
always regular because there are two constants of motion, theotion exists, we will apply standard tools, in particular, we
total energy in the center of mass and in the relative motionwill work out Poincaré surfaces of section.

Only in two or threg(or highe) dimensions can the dynam- Depending on the explicit form of the two-body potential
ics of the two-body system develop chaos. Such a thregA/(r) in Eq.(3), the dynamics in the relative coordinates can
dimensional system can be considered as quasi-twdse regular, chaotic, or mixed. Of course, for noninteracting
dimensional under the condition that the oscillatoryparticles[W(r)=0] the relative dynamicg3) and, corre-
frequencyw, of the motion along the coordinate is much  spondingly, the dynamics of the initial two-body systéhy
higher than the corresponding frequencigsand wy of the is regular. The character of the two-particle motion is defined
motion along thex andy coordinatesw,> wy, wy, ensuring by the form of the mutual two-body interaction. If no har-
that the energy of the motion is negligible compared to the monic assumption or approximation for the external confin-
energies of thex andy motions. This is the case, for ex- ing potential is made, chaoticity of the dynamics of interact-
ample, for two interacting electrons confined to a two-ing two-body systems can also be generated by higher than

dimensional quantum dot. second order terms, which destroy the separability into

Hence, the classical Hamiltonian of the system to be studeenter-of-mass and relative motion or by separable, but cha-
ied in the following takes the form otic center-of-mass dynamics.

2 2
_p1  py; 1 22, 22, 22, 22
H= om om Em(wxxl + Y1+ WG+ wyy)) B. Scaling properties
FW(Iry=r,)) (1) To be explicit, we investigate the dynamics of the relative
roteh subsystem3) for two like-charged particles with Coulomb

wherem is the particle mass;;=(x;,y;) andp;=(pi,Pyy), i interaction of the form
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(5) ﬂr(s’ﬁ’?’ﬁ) = BZlgHsc(sa M'soPso (12)

with

where the parameter measures the strength of the two-body o2 1 1 1
interaction. We underline that the ensuing general qualitative _Psc 22 2y, T 2 2
study of classical chaos for two identical charged particles He= 5 * 2(X5°+y“) * 28()(SC Yad * Ve +Y2,
(5) applies to any two-body system with a distance depen- (13)
dent force between the particles.

The dynamics is governed by four parameters: the twdJsing Egs.(6) and (12), we find that the energy, of the
frequenciesw, and o, of the one-body confining potential, relative subsystem scales according to
the strengthx of the two-body interaction, and the total en-
ergy & of the relative subsystem. Luckily, this many- E = B—z/ai_ (14)
parametric problem greatly simplifies due to scaling proper- s¢ hrwg

ties of the Hamiltoniar#,. The relative dynamics does not Since we will consider only the scaled dynamics of the rela-

depend individually on all four parametesg, vy, «, &, but : . -
only on some combination of them. This resembles the situyve subsystem described by the Hamiltonidlg, we sup-

. . T ress the index “sc” in the following.
ation for the hydrogen atom in a strong magnetic figsgi P According to the scaled Hamiltt?nia(riB) the dynamics
where the classical dynamics of the electron is determined be '

a combination of the total energ, and the strength param- the relative subsystem depends only on the deformation
eter of the external magnetic fielz;t asE/ M3 parametee and on the scaled energ{=E.); see Eq(14).

To find those scaling properties of the relative Hamil- Thus the original problem with four parameters is reduced to

tonian(3), we first introduce dimensionless quantities a problem V.V'th tW.° parameters. F(.)r a given deformation of
the harmonic oscillator the dynamics depends on the scaled

w<r>=§‘,

wwy - - energy only. We notice that
T= Tr, t:th, H,:Hr/ﬁwo. (6) 1 g
r
. o o =13 23 23 (15
Although the present discussion is purely classical, it is con- nwg

venient for the comparison with the quantum mechanicalq fol1ows from Eqs(14) and(10).
case later on to use an energy scale involving Planck’s con- £ the sake of completeness, we mention that the scaling
stantf. We also write procedure(6)—(14) can be extended to any two-body inter-

w)z(: wg(l +&) and w§: w(z)(l —8), @ action potential of the form
where the deformation parametermeasures the deviation WI(r) = En (16)
from the spherical case which is realized ég= w,. In terms r
of the frequencies, the deformation parameter is given by The gcaling of the total enerd of the relative subsystem is
Jo)2 -1 now given by
gz iode) —1 (8) ¢
(wx/wy) +1 E-= 18—2/(n+2)ﬁ_", (17)
With these definitions, we obtain the dimensionless Hamil- @o
tonian expressed in dimensionless variables, where
~ /2
P71l ol B _(M%)n @
=5 %3 5 - =\—70/) — 18
H, 2"'2(7( +y)+23& y)'*'\/m- 9 B % fiog (18)

The parameter is the dimensionless parameter.

B= HWo @ (10) C. Potential energy landscape

h h o . . .
@0 The scaled Hamiltoniard is equivalent to the Hamil-

measures the ratio between the strength of the two-body irfonian for two-dimensional motion of one particle governed

teractionW(r) and the strength of the one-body confining by the effective potential

potential. The original dependence on four parameters is thus 1 1

reduced to the three parameters scaled energynd 3. V() ==(x2+y) + Ze(x®-y?) +
This reduction of parameters can be carried one step fur- 2 2

ther by introducing the coordinates

_— 19

prarev
The landscape of the effective potentiél)=V(x,y) at fixed
F=p%r, and P=8"p.. (12) deformation parameter=0.4 is shown ir_1 Fig. (). o

The effective potential is characterized by an infinitely

This yields high peak at the origin due to the Coulomb potential
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a)e=0.4

V(x, >
a3
>
8
7
6 FIG. 1. The landscape of the effective poten-
i tial (19) at fixed deformation parameter=0.4 is
3 displayed in(a). (b) and (c) show the intersec-
2 tions of the surfac&/(x,y) with the planesx=0
1 andy=0.
>
=
>
14| .
12 1 1 1 1 1
-2 -1 0 1 2
X
1/\x?+y?. For large values af andy, the potentiaM(x,y) is With increasing energy, the boundary of the equipotential

dominated by the deformed harmonic oscillator term; see Ecghape becomes more ellipsoidal, and the size of the repulsive
(19). The details in the structure of the potential energy land-center decreases. The motion in such a potential is similar to
scape become clearer when looking at the intersections of tHbe one of a particle in an elliptic billiard with a repulsive
surfaceV(x,y) with the planesx=0 andy=0, given in Fig.  center.
1(b) and Fig. Ic), respectively. The counterplay between the
deformed harmonic oscillator and the Coulomb terms in Eq. D. Poincaré surfaces of section
(19) gives rise to the appearance of two local minima and . ) .
two saddle points in the potential energy surface. To study the motion governed by the (_affecuve potentl_al

The positions and corresponding energies of the two locdil9: we use the Poincare surfaces of section. The dynamical
minima shown in Fig. (b) are given by trajectories in the four-dimensional phase space,.y,p,)

are obtained numerically from the Hamilton equations of

Ymin= £(1-8)™ and Vyn=3(1-¢)Y, (200 motion. Since the scaled energyis conserved, we can ex-
ress the trajectory in a three-dimensional surface by writing

while the positions and energy values of the two saddl . as a function of the other variables in E43),

points shown in Fig. (c) are given by

— / 2
Xsag= £ (L+e)™3 and Vgg=3(1+e)Y.  (22) PXY,Py) = £ V2E =2V - pj. (22
Figure 2 shows the equipotential lines of the effective potenThe Poincaré surface of section is then defined as the set of
tial V(x,y). points at which the dynamical trajectories hit the plane
£=0.4,Vpin<V=1.5<Vgq £=0.4,V=V,4=1.68
1 T T T T T T T 1~5 T T T T T
1 - -
05 - i
05 E
x or E x 0 i
-0.5 e
0.5 | 1
ERS 4
K 1 1 1 1 1 1 1 15 1 1 1 1 1
2 -5 1 05 0 05 1 15 2 -2 -1 0 1 2
y y FIG. 2. The equipotential lines of the poten-
£=0.4,V=1.75V 4 £=0.4,V=3>Vgyy tial energy surface19).
1'5 T T T T T T T T T T T T
2F ]
1 L -
05| . T 1
x oF E X OF —
05 . ak i
Ak - 2l |
_1.5 1 1 1 ] 1 ] 1 1 1 1 1 ]
2 1 0 1 2 -3 2 1 0 1 2 3
y
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e=0.4, E=1.5
0.8 T T T T T T T T T T

086 [
04 |

4 FIG. 3. The Poincaré surfaces of secti@3)
for the scaled energy=1.5<V,,qate=0.4. Dots

§ represent one chaotic orbit. A few regular orbits
labeled by digits 1, 2, 3, and 4 correspond to
. different initial conditions for the Hamilton equa-
tions of motion.

02

Py

3 ={(x,y,py)|x=0}. (23) hierarchy of complicated regular orbits fill the white areas in
Fig. 3 and give rise to a fractal structure of the phase space.

A Poincaré surface of section for the scaled endtgyl.5 at In Fig. 4, we show Poincaré surfaces of section for two
£=0.4 is depicted in Fig. 3. At this deformation, we have scaled energies above the saddle point enefgy3 [Fig.
Vin=1.27 andV,~1.68; see Eq920) and(21). Thus, the 4(@&] and E=10 [Fig. 4b)]. At both energies, one chaotic
energy is below the saddle point energy confining the motior®rbit covers most parts of the available phase space. In Fig.
to the sectory>0 (or y<0) around the minimum; see Fig. 4(b) we also show one regular six-periodic orbit.
2(a). In contrast to the previous case, the particle has enough
A large part of the phase space is filled by one chaotienergy to pass the saddle point, and moves in both of the
trajectory shown by the gray area in Fig. 3. The dynamics isegionsy>0 andy<0. This is reflected in the presence of
mixed, and the different white areas correspond to regulatwo ovals in the Poincaré surfaces of section. As expected,
trajectories, of which we show four examples in Fig. 3 de-by increasing the scaled ener@y the relative fraction of
noted as 1, 2, 3, and 4. Orbit 1 surrounds the elliptic fix pointchaotic motion decreases. This feature is due to general prop-
that corresponds to a bouncing ball motion in yheirection  erties of the HamiltoniarE. Larger energie€ correspond
close toy=1. Orbit 4 is the pure one-dimensional motion either to larger absolute values wfandy, or to higher mo-
along they axis atx=0 andp,=0 that defines the border of mentap, andp,. In the first case, the contribution from the
the allowed phase space in Fig. 3. The fixed point close t@€oulomb potential in Eq(19) becomes smaller compared
orbit 3 corresponds to a banana-shaped orbit irkthigolane  with the contribution from the deformed harmonic oscillator.
bouncing fromx=0.4,y=0.7 to x=-0.4 y=0.7; see Fig. Therefore, the dynamics becomes more regular. In the sec-
2(a). Orbit 2 is a more complicated three-periodic orbit. A ond case, higher velocities imply that the dynamics of the

a) e=0.4, E=3 b) e=0.4, E=10

FIG. 4. The examples of the Poincaré surfaces
of section(23) for the scaled energiegs=3 and
E=10 above the saddle point ener@®l) at de-
formation£=0.4. As the energ¥ increases, the
fraction of chaotic parts of phase space decreases.

036207-5



RADIONOV, ABERG, AND GUHR PHYSICAL REVIEW E70, 036207(2004)

a) e=0.0, E=3 b) £=0.3, E=3
2 T T T T ' -
1 /_\ m- FIG. 5. The dependence of the Poincaré sur-
ot Q D J faces of section23) on the deformation param-
a \\J u_ etere [Eq. (8)] at fixed scaled energg=3. We
Al i notice thatE=3 is above the saddle point energy
L L 1 L L (21) for everye €[0,1]. In the cases=0 (1:1
2 i 0 ! 2 deformation, ande=0.6 (2:1 deformatioi, the
y classical phase space is regular due to the pres-
¢) e=0.6, E=3 ence of second constants of motion, the square of

the angular momentum and Eg24), respec-
tively. For the deformation parameter0.8 cor-
responding to the integer frequency ratig/ wy

=3 (3:1 deformation the classical phase space
is mostly regular due to the degeneracy of the
effective potentia(19) for integer w,/ wy.

system is less sensitive to the structure of the effective poeonstant of motion. However, there is indeed chaotic motion

tential (19); see Fig. 1. in a part of the phase space, excluding a second constant of
motion at this deformation parameter. By constructing the
E. Dependence of the chaoticity on the deformation Poincaré surfaces of section for thel,5:1,6:1,etc., ra-

. . . tios, we find that the degeneracy of the Hamiltonkhraris-
To investigate the effect of the one-body potential on thelng at integer frequency ratios,/ wy leads to the relatively

chaoticity, we study the dependence of chaotic trajectories i : : . .
the phase spadgd.3) on the deformation parameter rzrrgaelIr:%lg;rgydg;g?ne]a%giie space, but chaotic regions exist

By definition (.8)’ & measures thg ratio between thand . It therefore seems unlikely that a second constant of mo-
y axes of the ellipsoidal eqmpotentlal shapes of the pOter.]tlatlion exists for shapes other than 1:1 and 2:1. Thus, we con-
ir_‘frng 18u;Ladcél_?&t?oesea':égbtié;zg ?;(;TODI%, GSh;E);% \g'th clude from our numerics that the phase space comprises a
S ‘ o "' mixture of chaotic and regular orbits for all deformations,

;gfﬁﬁg'gﬁg’s Z(t)égr(:&g) iléer.éwallzgy;elc’aﬁ]:e 33’2%2¢ZSSOL;TEa|except 1:1 and 2:1. To characterize the classical dynamics,
y 9 P we numerically calculate the relative weight of chaotic re-

symmetry. The square of the angular momentum is the S€%ions in the totally available phase spdt8). We introduce

ond constant of motion. Remarkably, a second constant o - . .
motion also exists at the deformaties 0.6, i.e., for the 2:1 a chaoticity parameteq which measures the ratio between

shape of the oscillators,/ w,=2. This constant of motion is the area covered by chaotic trajectories and the total area of

related to the Runge-Lenz vector and was analytically Conialllowed phase space in the Poincaré surface of section. The
structed in Ref[22]. In our notation it reads two limits g=0 andqg=1 correspond to completely regular

and chaotic dynamics, respectively.

In Fig. 6, the chaoticity parametg=q(E, ¢) of the clas-
: (24) sical phase space is displayed as a function of the deforma-

tion parametee at fixed scaled energig=3.

Thus, the important question arises whether integrability is At e=0 ande=0.6 the motion of the systeii3) is com-
restricted to these two deformations, or if a second constargiletely regular such tha=0 for all scaled energies. The
of motion exists at other deformations as well. Since theremarkable feature becoming clear from Fig. 6 is the non-
motion is regular at 1:1 and 2:1 deformations, the 3:1 demonotonic dependence gEq(E, ) on the deformation pa-
formation is the first natural case to look for regular motion.rametere. Distinct local minima are present at the integer
To illustrate the dependence of the dynami@$) on the frequency ratiosv,/w,=3, 4, 5, and 6. A similar result was
deformation parameter, we work out the Poincaré surfaces found in Ref.[18].

| = yppy = XP5 + y?x = —

O +y?

of section for four values of at fixed scaled energy=3, as An infinite set of local minima of the functiom
shown in Fig. 5. This value of the scaled energy is above theq(E,s) seems to appear for all integer ratias/w,
saddle point energy21) for everye €[0,1]. =...,7,8,9,... In the limit e —1, the relative fraction of

It is reassuring for our numerics that it reveals a com-chaoticity of the classical phase space can be estimated to
pletely regular phase space for0 ande=0.6, i.e., for 1:1  q—0.52. The limite —1 is reached forw,> w, [see Eq.
and 2:1 ratios of thex andy axes. The 3:1 deformation (8)], which corresponds to quasi-one-dimensional motion
corresponds t@=0.8, and the Poincaré surface of section isalong they axis. On the other hand, putting=1 in the
shown in Fig. %d). Is there a second constant of motion in Hamiltonian (13) leads to Hamiltonian equations for un-
this case or not?—as the phase space is mostly regular, obeunded motion along the axis, which is completely regu-
is, at first sight, tempted to expect the presence of a secorldr, since any one-dimensional motion is regular. The dynam-
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E=3

o8| i FIG. 6. The dependence of the chaoticity pa-
rameterq=q(E, &) on the deformation parameter
e at the scaled energfE=3>V,,{e). Local
06 L minima at 0.8, 0.88, 0.92, and 0.97 correspond to
the integer frequency ratias,/ v,=3, 4, 5, and 6,
% respectively. In the limie— 1, the chaoticity pa-
04 41 i rameterq approaches the value 0.52. The stars
301 mark the numerically calculated values gfthe
solid line is a spline interpolation to guide the
02| . eye.

q(Ese)

111 [2:1

ics in the quasi-one-dimensional case is thus quite differenbn the scaled enerdy at the two deformations=0.4 (left-
from the dynamics in one dimension. In a similar way non-hand figur¢ ande =0.55(right-hand figurg Theq values are
integrability is introduced by accounting for the third dimen- numerically calculated at energies marked in the figure.
sion in a quasi-two-dimensional systdai]. An important structure of the dynamics governed by the
Another interesting feature visible in Fig. 6 is the behav-HamiltonianH is borne out in Fig. 7: Below the saddle point
ior of the parameteq near the global minimum at=0.6. We  energy(marked by an arrowmost orbits are regular. The
have checked thaj=q(E, ) in this region is a smooth func- corresponding motion is restricted to the area around one
tion of the deformation parameter Thus, the Kolmogoroff- local minimum; see Fig. ). As the energy is increased to
Arnold-Moser theorenfil] can be used to study the transition Values above the saddle point, the particle can move in the
from regularity to chaos at this value of the deformation€ntire plane, and an ever larger fraction of chaotic orbits

parameter. Of course, this also applies to the more triviafPP€ars. The chaotic dynamics has a distinct maximum for
case ofe=0. an energy just above the saddle point energy; When the

energy is increased even more, the effect due the Coulomb
interaction in Eq(19) becomes less important, and the area
of regular orbits increases. We notice that the scaled energy
Investigating the dependence of chaotic motion on thehecomes larger either with growing total energly of the
scaled energf ~ £,/ a?° requires us to simultaneously study relative subsystem or with decreasing strengtbf the Cou-
the role of the relative energy in the two-body systefy, lomb interaction; see Eq15).
and the dependence on the strengthf the two-body inter- For a fixed value of the total energy, changes in the scaled
action. energy are due to varying strengthof the two-body inter-
In Fig. 7 we show how the degree of chaoticity dependsaction. The noninteracting case then corresponda -0,

F. Dependence of the chaoticity on the scaled energy

e=0.4 £=0.55

FIG. 7. The ratiog=q(E,e) between the area
0.8 - 7 of chaotic regions and the total area of allowed
phase space in the Poincaré surfaces of section
(23) versus the scaled ener@yat fixed deforma-
06 7 tion parametee=0.4 (left) ande=0.55(right). A
similar dependence ok is expected for every
deformation parameter. With increasing energy
E, the relative fractionq of chaotic orbits de-
creases. The stars mark the numerically calcu-
lated values ofy the solid line is a spline inter-
polation to guide the eye.
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i.e., E—co. In this limit the motion of the two noninteracting the particles 1 and &, r,,5,<S,). Since in this case the
particles is regular at all deformations, as already seen in Egenter-of-mass functio®g(R) and the spin wave function
(1). The onset of the two-body interaction is prompted by ad(s;,s,) are always symmetric under the interchange of two
decreasing value of the scaled energy. Figure 7 shows hoparticles, the relative functio®,(r) must be also symmetric,
chaos smoothly sets in with increasing strength of the twoi e | have positive parityd,(-r)=0,(r). Second, in the case
body interaction at both deformations. At the special deforof two interacting fermions the total wave function
mationse =0 ande=0.6, the motion is regular for all values W(ry,S;;r5,S,) must be antisymmetric, which means that if

of the scaled energy. In those cases the onset of the strengfl, spin functiond (s, ,s,) is symmetric the relative function
of the two-body interaction has no impact on the dynamlcs®r(r) must be antisymmetric, i.e., have negative parity,
which remains regular. 0,(-r)=-0,(r)

r r "

The parity of the relative functio®,(r) defines the sym-
1. QUANTUM MECHANICAL CASE metry properties of the total wave function function
l?(rl,sl;rz,sz). As we will see below, for the Coulomb in-

We now r h ntum mechanical manif ion ; . . .
e now address the guantu echanical manifestatio %eractlon(or any other purely distance dependent interagtion

classical chaos for our system. In Sec. Il A, we set up th he eigenstates of the relative subsvstem separate into solu-
Hamilton operator and draw certain conclusions for the. Ig€ . lve subsy pe : u
ions with negative and positive parity, respectively.

quantum statistics. After discussing scaling properties in sed! . )
[l B, we sketch the numerical computation of the spectra in A comment on possible experimental study of the energy

Sec. Il C. We investigate the spectral statistics in Sec. Il D.Spectrum for the two-body interacting systéthis in order.
Mostly, one measures the electric dipole radiation of the sys-

tem. The intensity is proportional to the square of the center-
of-mass vectoR. As the quadratic confining potential for the
The Hamilton operatoH corresponding to the classical center-of-mass subsystem does not affect the relative dynam-
system (1) in the center-of-mass coordinates decouplescs, the excitation spectrum of the total two-body system
analogously to the classical casi,=Hg+7,, where the is defined only by the excitation of the center-of-mass sub-
system. This is true for every two-body interaction between

center-of-mas§:[R and the relative)':{r Hamilton operators he particles. Hence. one cannot measure the enerdy Spec-
are quantized versions of the corresponding classical Hami{- P ) ' gy sp

tonians (2) and (3). Thus, the wave function of the total rum of the relative subsystem by electric dipole transitions.

. Only by measuring transitions with higher multipolarities,
two-body system can be written as the prod@Xfr,,r,) ) . : . .
—0x(R)O,(r) of the wave functions®y and ©, for the information about the influence of the mutual interaction be-

center-of-mass and the relative subsystems, respectively. Tlﬁvéi?g dng;clgsef(;géhze 4]two-body energy spectrum can be ex-

total energy is the suny,=Eqmrt+Eqm, Where the center-
of-mass energy,mg and the relative energ§,, are found

from B. Scaling properties

A. Hamilton operator and quantum statistics

7’:(R®R(R) = EqmrOr(R), Before calculating the quantum mechanical engr@jﬁ, .
we compare the scaling properties of the classical Hamil-
tonian’, (3) for the relative subsystem with the correspond-

HeOHr) = EqmsOr(r). (25 ing quantum mechanical Hamiltonian operatd. Using
Obviously, we have Egs.(6) .and(lll), we rewrjte the Schrbdipger equati_on in the
. . same dimensionless variables that we introduced in the clas-
Eqnr= (Kx+ 3o+ (K, + 3)haw, (26)  sical case. We have
for the center-of-mass energy with two good quantum num- |:|®r(X,y) = Eqn®:(x.Y), (28)

bersK, andK,. We eliminate this integrable part from our

consideration, and concentrate on the study of the energyhere®,(r)=0.(x,y) and

spectrum&yy,, of the relative subsystem in E(R5) at fixed A 12 1 P

quantum numberg,, K. H=--—5+-(x%+y?)+ %6(x2 -V + —=—. (29
So far, we have not taken the spigsands, of the par- 29r° 2 VX +y?

ticles into account. However, this has to be done to under-

stand the quantum statistics of our problem. As there is n(‘)l’he scaled energy reads

coupling between the orbital and the spin motions, we can Eqmy
write the total wave function in the form Eqm= Ty (30)
W(ry,81372,%,) = Or(R)O(N)P(sy,Sy), (27) " The paramete is given by Eq.(10). In contrast to the

where d(s;,s,) is the spin wave function. To discuss the classical Hamiltoniarg3), the Hamilton operatoH does not
guantum statistics of the two interacting particles, we distin-scale with the paramet@. However, by exploiting Eqg14)
guish bosons and fermions. First, for two bosons,and (13), we can formally achieve one-to-one correspon-
W(ri,8;r2,5) should be symmetric under interchange ofdence with the classical scaled Hamiltonidrby putting 8
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=1. The fixing of the parameteB implies that we fix the rately for positive and negative parityy=+1 and y=-1,
number of energy states involved in consideration. Becauseespectively. The limited sizes of the matrices leads to nu-
of the practical limitation on the size of the matrix consisting merical errors in the calculation. To estimate the number of

from the matrix elements d:ﬁ, we cannot consider the semi- calculated eigenvalues which can be used with SuffiCiently
classical limit#— 0(8— =), when the correspondence be- high precision, we compared the results of the computations

tween classical and quantum mechanical cases should hol§arried out with truncated matrices of different sizes. By
comparing the energy eigenvalues from calculations with

C. Computation of the spectra 355x 355 and 555% 555 matrices we find that the lowest
72% of the eigenvalues are calculated with an error less than

ngoV\?eb;aJr]ng:ﬁ;;:ged?;agrﬁ?;eoghghergﬁm%? n Aospggtigr 0.1%. In the calculations presented below we have used the
(29), y diag proble(2s). first 400 energy levels from the totally 555 calculated eigen-

wave function, we choose the eigenfunctions of the de-
: : . values.
formed harmonic oscnlator(x,y|nx,ny>, that is, the exact

eigenfunctions oH in the absence of the Coulomb interac-
tion, characterized by the good quantum numivgrandn,.
With these basis functions, we compute the matrix elements For systems with two degrees of freedom the relation be-
<nx,ny|I:||n)’(,n;>. tween classical and quantum mechanics has been investi-

This choice of basis wave functions implies the following 9ated in a large number of cases. The studies confirm the

selection rules for the matrix elements of the Coulomb interBohigas-Giannoni-Schmit conjectufe—4.§. It states that
action: the quantum system should show spectral fluctuations of the

Wigner-Dyson type if the corresponding classical system is

D. Spectral statistics

1 . 'or) fully chaotic while other spectral fluctuation, often of the
1o _ 1)(ngtny) — (_ 1)(ng+ny) : . N .
<n><'ny vy nx'ny> #0 if  CDPY=(DBY, piisson type, are expected if the corresponding classical sys-
tem is regular. In these cases, the distributip(® of spac-
1 ings s between adjacent levels are given by
roar\ — ; _ 1)\(ng#ny) _ 1\(n+n)
Ny, Ny —\szyZ neny ) =0 if (=)™ £ (= 1)"N%TY),

p(s) = Ts exp(— 7—Tsz> and p(s)=exp-s) (33

(31 2 4
This is so because the Coulomb potential is an even functiofPr Wigner-Dyson and Poisson statistics, respectively. Re-
of the x andy variables, implying that the matrix element Ce€ntly, progress has been made in proving this conjecture
vanishes if the Hermitian polynomials yield an even or odd[25.28. Thus, in our case, we expect that the spectra of the
function in the integrand. Thus, a parify=(-1)™*" can be quantized rella'tlve motion shovy these |Imll'[S as WeII_.
assigned and théruncatedl matrix with matrix elements A more difficult situation arises for mixed classical dy-
(n,.n ||:||n’ n') is block diagonal iny. According to E namics, since its quantum man|fe§ta_t|0n is a hlghly nontrivial

XUyE Xy ) 9 - 9 9 issue. In a rather general form, this is studied in terms of the
(31), y defines the spatial parifx— -x, y—-y) of the rela-  gohigas Tomsovic-Ullmo mode27] which can be viewed
tive function ®(r)=0;(x,y). _ _ as an extension of the Bohigas-Giannoni-Schmit conjecture.

As discussed above, parity has a different impact for two-pye to the complexity of the classical phase space, no simple
fermion or two-boson systems. We will consider positive andgpq generic form for the nearest neighbor spacing distribu-
negative parity separately, but later on we will add the infor-tion can be conjectured. Nevertheless, one often uses the

mation from both spectra when studying statistical properpyrely phenomenological Brody distributi¢@8]
ties.

There are additional constants of motion at the 1:1 and p(s) = (q+ VoS expl— ogs™),
2:1 shapes in classical mechanics. Correspondingly, an ad-
ditional quantum number exists at each of these two defor- (q + 2)
. . . ~ = —|, (39

mations in the quantum case. The Hamilton operktaom- 4 g+1

mutes with the square angular momentum operator in the , .

circular casg(1:1), and with the operator vv_he_rel“(x) is theI function. Forq:O andq:_l, the Brody _

distribution becomes the Poisson or the Wigner-Dyson dis-

P P X tribution, respectively. For values<0q< 1 of the parameter

—X— +yX - —— (32

i- |
yax&y ay? y VX2 +y2

g, the Brody distribution interpolates between the Poisson
and the Wigner-Dyson distribution. Importantly, one has
at the 2:1 deformation. However, these additional symmep(0)=0 ats=0 for all g> 0. This is tantamount to having no
tries are not exploited in the calculation of the spectra. Thisfisconnected regions in phase space.
gives us an extra check of our numerical procedures at the To measure the spectral fluctuations independently of the
1:1 and 2:1 shapesee Fig. 11 beloyw level density, one proceeds as folloj@s-4,29. In Fig. 8, the

In solving the Schrodinger equati@@8) numerically, we  counting functionN(Eg,) is shown for the first 50 positive
use truncated matrices Of th? Size 56555, Constructed parity energy levels calculated at two deformation param_
from the matrix elementé,, ny|H|n)’(,n§>. This is done sepa- eterse=0.4 ande =0.55. The counting functioN(E,) gives
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e=0.4, y=+1
50 T 1 1 1 1 d

£=0.55, y=+1
50 T 1 1 1 1 1
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FIG. 8. Counting functiorN(Eg,) for the first 50 levels with
positive parityy=+1, on the left hand side for deformation param-
eter e=0.4, on the right hand side for deformation parameter

PHYSICAL REVIEW E70, 036207(2004)

the number of energy states less than or equdtp One
decomposes the counting function into a smooth N&,,)

and a fluctuating parN(Egy), such thatN(Eqm):KI(Eqn)
+Ny(Eqm). The derivative of the smooth part is the level

density p(Eqm) =dN(Eqy) /dEgy We fit this smooth part of
the counting function, i.e., the cumulative level density, with
a quadratic polynomial. The fit by quadratic polynomials is
done separately for the positive and negative parity spectra.
The fit is very good; examples are shown in Fig. 8.

The level density is unfolded from the spectra by mapping
the energies E;,, onto new energy variables¢,

=N(Egmn), N=1,2,3,.... The spacings between adjacent lev-
els are the differences,=¢,:1-&,, n=1,2,3,....

For the comparison between empirical or numerical data
with formulas such as Eqg33) and(34), one often employs
the cumulative spacing distributions

F(s) = f p(s’)ds’, (35
0

which is the probability to find spacings smaller than or
equal tos. Advantageouslyf(s) is in contrast top(s) inde-
pendent of binning effects.

In Fig. 9 we show the cumulative spacing distribution for
two values of the deformation parameter0.4 and e
=0.55 obtained from the numerical calculation. Both
positive-parity and negative-parity states are included in the
distribution function. Fitting the cumulative spacing distribu-
tion with the help of Eqs(34) and (35), we getq~0.9 for
£=0.4 andq=0.4 fore=0.55.

The resulting nearest neighbor spacing distributip(s
for these two cases at=0.4 ands=0.55 are depicted in Fig.
10.

We find that the nearest neighbor spacing distribution is

=0.55. The solid lines are the corresponding smooth parts of th@/most fully compatible with the Wigner-Dyson case for the

counting function, obtained by fitting a second order polynomial.

£=0.4, g=0.9 £=0.55, g=0.4

spectrum at=0.4 and that it is between Wigner-Dyson and
Poisson at=0.55. We conclude that our statistical analysis

F(s)
F(s)

GoE - ]

FIG. 9. The cumulative spacing distribution
1 F(s) calculated for the deformation parameters
£=0.4 ande=0.55. The fit givesq=0.9 for ¢
=0.4 andq=~ 0.4 fore=0.55. For comparison, the

E cumulative Poisson and Wigner-Dyson statistics
are also shown as dotted lines.
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T
* Poisson
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€=0.55
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% Poisson
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FIG. 10. The nearest neighbor spacing distri-
bution p(s) for two values of deformation param-
etere=0.4 ande =0.55, obtained from the numer-
ics (histogramg The lowest calculated 400
positive-parity and negative-parity energy states
are included. The solid lines show the Brody dis-
tributions resulting from the fit of the cumulative
spacing distributions. For comparison, the Pois-
son and the Wigner-Dyson spacing distributions
are also shown as dotted lines.

", GOE

p(s)
p(s)

is consistent with the expectation from the Bohigas-it would require a much more detailed prediction for the

Giannoni-Schmit conjecture. spacing distribution. Here, we stress once more that the
We also constructed the nearest neighbor spacing distrBrody distribution is purely phenomenological. It is encour-

bution p(s) for two special deformation parametess0.0  aging that it yields a satisfactory description of the numerical

ands=0.6 for which the Hamiltoniam commutes with the data, but we would find it questionable to more deeply inter-
square angular momentum operator and with the operatd}®t the mixing parametey obtained from the fit. Moreover,
(32), respectively. Results are presented in Fig. 11. We sethe limited energy window of the quantum mechanical cal-
high peaks at small spacingsvhich can be explained by the culat|on. also severely limits .the possibility for quantitative
shell structure of the energy levels at both deformation pa¢omparison between classical and quantum mechanical
rameterss. Despite the fact that at these deformations thef@Se€s.
classical system is regular, the nearest neighbor spacing dis-
tribution p(s) does not follow the Poisson statistics as can be
expected from the Bohigas-Giannoni-Schmit conjecture. The
deviation is originating from the high degeneracies of the In an attempt to achieve some deeper understanding of
energy levels at these two shapes of the confining potentiahow chaos emerges in interacting many-body systems, we
and the deviations from Poisson statistics is similar to whainvestigated the simplest nontrivial many-body system. We
is well known for the deformed harmonic oscillator potential. studied two particles in two dimensions subject to a confin-
We want to settle with this qualitative observation. A ing one-body field and to a two-body interaction. The system
more guantitative comparison between the classical and theas four degrees of freedom, and is in general quite compli-
guantum mechanical results would be very difficult, becauseated. In order to simplify, we assumed the one-body field to

IV. SUMMARY

e=0.0

25

p(s)

* Roisson

05| |

p(s)

25

€=0.6
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FIG. 11. Spacing distributiop(s) for the de-
formation parameters=0 ande=0.6 both corre-
sponding to classically regular motion.
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be a deformed harmonic oscillator, and the two-body interthe two-body interaction. We also found local minima of the
action to be a Coulomb interactiarn/'r, where we treated the degree of chaoticityfas measured by the parametgr
strengtha as a parameter. Due to the harmonic character ofq(E, )] at deformations of the harmonic oscillator corre-
the confining potential, only the relative subsystem can givesponding to integer values of,/ w,; cf. Refs.[18,19.
rise to chaotic motion, while the center-of-mass dynamics is For small values of the scaled energy the motion was
always regular. We employed center-of-mass coordinates tipund to be near regular for all shapes. The motion is then
reduce the total four-dimensional dynamics of the interactingonfined around one of the two local minima in the potential
two-body system to the two-dimensional dynamics of theenergy surface of the relative motion coordinates. As the
relative subsystem. scaled energy is increased to values close to the saddle point

The relative dynamics is defined by the frequenaigs in the potential energy, the size of the chaotic phase space
and wy of the deformed harmonic oscillator, by the strengthtakes a maximum. The size of the chaotic phase smoothly
« of two-body interaction, and by the total ener§yof the  decreases as the scaled energy increases. For very large val-
relative subsystem. We have shown that for the Coulomiyes of the scaled energy, corresponding to very small values
interaction(or for any other purely distance dependent inter-of the strength of the two-body interaction, the motion ap-
actior) the relative Hamiltoniart{, can be scalefisee Egs. proaches regularity.
(3+13)]. The scaling dynamic¢13) depends only on the  The corresponding quantum mechanical problem was also
scaled energ§ (14) and on the deformation paramete8),  j,yestigated. The excitation of the center-of-mass subsystem
which measures the relation petwgen the frequerta;(gmd could be characterized by two good quantum numbers which
wy. The scal!ng of the energy |mpI|es_ that the dynamics doeg g e guantum numbers of the deformed harmonic oscilla-
not depend independently on ttrelative) energyé, and on  tor operator. Therefore, quantum chaos for the interacting
the ;trengtha °f2}§‘e two-body force, but on the combined two-body system could appear only due to dynamics of the
relationE~&/a”". ) relative subsystem.

The classical phase_space of th? relative subsystem shqws To estimate statistical fluctuations in the energy spectrum
a rich structure with mixed dynamics of regular and chaotic ¢ 4 o ralative subsystem we solved numerically the corre-
trajectories. The dynamics was studied by numerically SOIV'sponding Schradinger equation. After unfolding the energy
ing the classical Hamiltonian equations of motion, and by th pectrum, the nearest neighbor spacing distribution, and the
construction of Poincaré surfaces of section. The fraction o orrespor;ding cumulative distribution. were studied.,
chaotic orbits in the allowed phase spagewas studied for Very recently, we became aware o’f the very recent work
different values of the two independent parameters, deformas; p¢ [19] that,already contains some of the results which

tion and scaled energy. . . we also obtained in the quantum mechanical case.
The degree of chaoticity was found to increase as the

strength of the two-body interaction was increagadas the
relative energy decreasedHowever, the explicit shape of
the one-body fielddeformed harmonic oscillatpwas found
to play a most important role. In particular, since the motion We thank Stephanie Reimann and Stefan Keppeler for
in the circular(1:1) and in the 2:1 shapes is integrable, thefruitful discussions. S.A. and T.G. thank the Swedish Natural
dynamics is always regular, independent of the strength oBcience Research Council for financial support.

ACKNOWLEDGMENTS

[1] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics [11] L. Kaplan and T. Papenbrock, Phys. Rev. Le84, 4553

(Springer, New York, 1990 (2000.

[2] H.-J. StéckmannQuantum Chaos: An IntroductioiCam- [12] F. Borgonovi, I. Guarneri, F. M. Izrailev, and G. Casati, Phys.
bridge University Press, Cambridge, England, 1999 Lett. A 247, 140(1998.

[3] F. Haake,Quantum Signatures of Chao2nd ed.(Springer, [13] M. Van Vessen, M. C. Santos, B. K. Cheng, and M. G. E. da
Berlin, 200)). Luz, Phys. Rev. E64, 026201(2001.

[4] T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller, Phys. [14] L. Meza-Montes and S. E. Ulloa, Phys. Rev. 35, R6319
Rep. 299 189(1998. (1997).

[5] H. Friedrich and D. Wintgen, Phys. Ref83 37 (1989. [15] J. Sakhr and N. D. Whelan, Phys. Rev.6®, 042109(2000.

[6] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.[16] D. Wintgen, K. Richter, and G. Tanner, Cha@s823(1992.
52, 1(1984). [17] D. Wintgen, A. Burgers, K. Richter, and G. Tanner, Prog.

[7]1 M. Berry, Eur. J. Phys2, 91 (1981). Theor. Phys. Suppl116, 121(1994.

[8] O. Bohigas, R. U. Haqg, and A. Pandey, Nuclear Data for  [18] P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, Europhys.
Science and Technologgdited by K. H. Bdchhoff(Reidel, Lett. 64, 232(2003.
Dordrecht, 1988 p. 809. [19] P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, Phys. Rev.

[9] N. Rosenzweig and C. E. Porter, Phys. R&20, 1698(1960. B 69, 035333(2004).

[10] K. Patel, M. S. Desai, V. Potbhare, and V. K. B. Kota, Phys.[20] P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, J. Phys.:
Lett. A 275 329(2000. Condens. Matterl6, 3633(2004).

036207-12



REGULARITY AND CHAQOS IN INTERACTING TWO-... PHYSICAL REVIEW E 70, 036207(2004)

[21] R. G. Nazmitdinov, N. S. Simonovic, and J. M. Rost, Phys.[26] S. Miiller, S. Heusler, P. Braun, F. Haake, and A. Altland,

Rev. B 65, 155307(2002. e-print nlin.CD/0401021.

[22] G. Baumann and T. F. Nonnenmacher, Phys. Red6A2682  [27] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. R&23 43
(1992. (1993.

[23] P. A. Maksym, Physica B49, 233(1998. [28] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey,

[24] F. M. Peeters, Phys. Rev. B2, 1486(1990. and S. S. M. Wong, Rev. Mod. Phy83, 385(1981).

[25] M. Sieber and K. Richter, Phys. Scr., 90, 128 (200D; M. [29] O. Bohigas, Mathematical and Computational Methods in
Sieber, J. Phys. A35, L613 (2002. Nuclear PhysicgSpringer, Berlin, 1984 p. 1.

036207-13



