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We study classical and quantum chaos for two interacting particles on the plane. This is the simplest
nontrivial case which sheds light on chaos in interacting many-body systems. The system consists of a con-
fining one-body potential, assumed to be a deformed harmonic oscillator, and a two-body interaction of
Coulomb type. In general, the dynamics is mixed with regular and chaotic trajectories. The relative roles of the
one-body field and the two-body interaction are investigated. Chaos sets in as the strength of the two-body
interaction increases. However, the degree of chaoticity strongly depends on the shape of the one-body poten-
tial and, for some shapes of the harmonic oscillator, the dynamics remains regular for all values of the
two-body interaction. Scaling properties are found for the classical as well as for the quantum mechanical
problem.
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I. INTRODUCTION

The quantum mechanical correspondence to classical
chaos, quantum chaos, is well studied for one-body systems,
such as billiard systems, the hydrogen atom in strong mag-
netic fields, etc.; see, e.g., Refs.[1–5]. In the corresponding
quantum system, classical chaos is revealed by the fluctua-
tion properties of energies and wave functions[6]. The con-
nection between classical and quantum chaos is thus, from a
practical point of view, rather well understood[7].

Systems consisting of many interacting particles, such as
atomic nuclei, quantum dots, and most atoms and molecules,
often show spectral fluctuation properties which coincide
with those of quantum chaotic systems[8,9]. Although quan-
tum chaos is likely to be the reason for those fluctuation
properties in systems with many degrees of freedom, there is
no proof for such a conclusion. Moreover, in many-body
systems mutual interactions and quantum statistics of par-
ticles are expected to play an important role. From this point
of view, it is difficult to determine the key mechanism gen-
erating irregularity in such systems. If several particles are
confined by a one-body field, the dynamics of the one-body
field governs the individual motion of the particles. An inter-
esting question is how this is changed if the particles are
influenced by a two-body interaction in addition to the one-
body field. Can, for example, a system of particles moving in
a regular potential show chaotic motion due to the two-body
interaction?

To study the combined role of the one-body interaction
and the two-body interaction in many-body systems, we shall
concentrate on the simplest nontrivial case, namely, the in-
teracting two-body system. Specifically, we consider two
identical particles in a two-dimensional deformed harmonic
oscillator potential. The motion is regular if the particles are

noninteracting. By introducing a two-body interaction be-
tween the particles, we may study the role of this interaction
in the onset of chaos. The two-body interaction is assumed to
be of Coulomb type, where we control the strength of the
interaction by a parameter. Also the role of the one-body
field may be studied, such as for example, how will the dy-
namics of the two-body system depend on the shape of the
oscillator.

There is a wide literature on studies of chaotic properties
of two-body systems[10–12]. In Ref. [13], the origin for the
irregularity of quantum spectrum is considered for two par-
ticles interacting through short-range potentials. The motion
of two charged particles in a billiard is studied in Ref.[14].
Furthermore, there is an attempt to investigate weakly inter-
acting two-body systems in the semiclassical limit by con-
structing a trace formula[15–17]. In Refs.[18–20], the quan-
tum spectrum is calculated for two-electron anisotropic
quantum dots. In these articles a general analysis of the clas-
sical phase space and of the fluctuation properties of the
energy levels is made at different deformations of the quan-
tum dot. In particular, a peculiarity of the classical dynamics
and of the corresponding quantum mechanical spectrum of
the system was found at integer frequency ratios of the de-
formed harmonic oscillator. On the other hand, quantitative
descriptions of the classical chaoticity and its dependence on
both deformation and excitation energy of the system, scal-
ing properties of the classical and quantum mechanical
Hamiltonians have not been considered in these articles.
Such questions, in our opinion, are important for the inves-
tigation of the appearance of the classical and quantum chaos
and will be considered in detail in our paper.

In Sec. II we formulate the general classical problem of
motion of many mutually interacting particles confined by a
one-body potential. Specifically, we consider two identical
charged particles in the field of the two-dimensional de-
formed harmonic oscillator, interacting via a scaled Coulomb
force. By smoothly turning on the strength of the two-body
interaction, we can study how chaotic motion sets in for the
initially regular dynamics. Using center-of-mass coordinates
it becomes possible to consider independently the motion of
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the center of mass and relative subsystems. We show how the
two-body Hamiltonian can be scaled, thus reducing the num-
ber of independent variables in the problem.

Section III is devoted to the quantum mechanical mani-
festation of the corresponding classical mixed dynamics. In
the quantum case we also use the center-of-mass coordinates,
leading to a separation of the excitation spectra of the center
of mass and relative subsystems. Scaling properties of the
quantum mechanical two-body Hamiltonian are also studied.
By performing level statistical analysis, we quantify the de-
gree of quantum chaos of the quantum spectrum. The chao-
ticity of the classical phase space is compared to a fitting
parameter characterizing the irregularity of the quantum
spectrum(Brody parameter).

Finally, a summary of the main results is given in Sec. IV.

II. CLASSICAL CASE

After setting up the model in Sec. II A, we discuss scaling
properties in Sec. II B. The features of the effective potential
are investigated in Sec. II C. In Sec. II D, Poincaré surfaces
of section are worked out. The dynamics depends on the
one-body as well as on the two-body interaction. The influ-
ence of the deformation of the confining harmonic oscillator
potential is studied in Sec. II E, and that of the scaled energy
related to the strength of the two-body interaction in Sec.
II F.

A. The model

We consider a system of many identical particles moving
in an external confining potential and interacting through
two-body central forces. A harmonic oscillator type of con-
fining potential with frequenciesvx, vy, andvz can be ob-
tained by expanding the external confining potential around
its minimum up to the second order, which is widely used in
molecular physics and in the physics of quantum dots.

To gain insight into certain general features of such a
system, we consider the simplest nontrivial case, namely,
two identical interacting particles on a plane. We notice that
the motion of two interacting particles in one dimension is
always regular because there are two constants of motion, the
total energy in the center of mass and in the relative motion.
Only in two or three(or higher) dimensions can the dynam-
ics of the two-body system develop chaos. Such a three-
dimensional system can be considered as quasi-two-
dimensional under the condition that the oscillatory
frequencyvz of the motion along thez coordinate is much
higher than the corresponding frequenciesvx and vy of the
motion along thex and y coordinates,vz@vx,vy, ensuring
that the energy of thez motion is negligible compared to the
energies of thex and y motions. This is the case, for ex-
ample, for two interacting electrons confined to a two-
dimensional quantum dot.

Hence, the classical Hamiltonian of the system to be stud-
ied in the following takes the form

H =
p1

2

2m
+

p2
2

2m
+

1

2
msvx

2x1
2 + vy

2y1
2 + vx

2x2
2 + vy

2y2
2d

+ Wsur 1 − r 2ud, s1d

wherem is the particle mass,r i =sxi ,yid and pi =spix ,piyd , i

=1, 2, stand for position and momentum vectors of the par-
ticles, andWsur 1−r 2ud is the two-body interaction. The cor-
responding phase space is eight dimensional. Regular dy-
namics requires the existence of four constants of motion. As
the interaction contains a purely distance dependent part, it is
natural to introduce center-of-mass coordinatesR=sr 1

+r 2d /2 , r =r 1−r 2, whereR andr are the center-of-mass and
relative vectors, respectively. The HamiltonianH now sepa-
rates,H=HR+Hr, into the center-of-mass Hamiltonian

HR =
pX

2

2M
+

pY
2

2M
+

1

2
Mvx

2X2 +
1

2
Mvy

2Y2 s2d

and the relative Hamiltonian

Hr =
px

2

2m
+

py
2

2m
+

1

2
mvx

2x2 +
1

2
mvy

2y2 + Wsrd, s3d

whereM =2m andm=m/2 are the total and the reduced mass
of two identical particles. This advantageous separation is
due to the harmonic approximation of the external confining
potential. The inclusion of higher than second order terms in
expansion of the external potential will, in general, destroy
this feature.

The center-of-mass and the relative motion of the system
(1) are uncoupled. As can be seen from Eq.(2), the center-
of-mass dynamics is regular since the HamiltonianHR is
separable with respect to theX and Y axes. Obviously, the
energies

EX =
1

2
Mvx

2X2 and EY =
1

2
Mvy

2Y2 s4d

are the two constants of motion for the center-of-mass sub-
system.

Thus, we can now focus exclusively on the relative sub-
system whose phase space has half of the dimension of the
original one. The energy in this subsystem is a constant of
motion as well. To see whether or not a second constant of
motion exists, we will apply standard tools, in particular, we
will work out Poincaré surfaces of section.

Depending on the explicit form of the two-body potential
Wsrd in Eq. (3), the dynamics in the relative coordinates can
be regular, chaotic, or mixed. Of course, for noninteracting
particles fWsrd=0g the relative dynamics(3) and, corre-
spondingly, the dynamics of the initial two-body system(1)
is regular. The character of the two-particle motion is defined
by the form of the mutual two-body interaction. If no har-
monic assumption or approximation for the external confin-
ing potential is made, chaoticity of the dynamics of interact-
ing two-body systems can also be generated by higher than
second order terms, which destroy the separability into
center-of-mass and relative motion or by separable, but cha-
otic center-of-mass dynamics.

B. Scaling properties

To be explicit, we investigate the dynamics of the relative
subsystem(3) for two like-charged particles with Coulomb
interaction of the form
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Wsrd =
a

r
, s5d

where the parametera measures the strength of the two-body
interaction. We underline that the ensuing general qualitative
study of classical chaos for two identical charged particles
(5) applies to any two-body system with a distance depen-
dent force between the particles.

The dynamics is governed by four parameters: the two
frequenciesvx and vy of the one-body confining potential,
the strengtha of the two-body interaction, and the total en-
ergy Er of the relative subsystem. Luckily, this many-
parametric problem greatly simplifies due to scaling proper-
ties of the HamiltonianHr. The relative dynamics does not
depend individually on all four parametersvx,vy,a ,Er, but
only on some combination of them. This resembles the situ-
ation for the hydrogen atom in a strong magnetic field[5],
where the classical dynamics of the electron is determined by
a combination of the total energy,E, and the strength param-
eter of the external magnetic field,g, asE/g1/3.

To find those scaling properties of the relative Hamil-
tonian (3), we first introduce dimensionless quantities

r̃ =Îmv0

"
r , t̃ = v0t, H̃r = Hr/"v0. s6d

Although the present discussion is purely classical, it is con-
venient for the comparison with the quantum mechanical
case later on to use an energy scale involving Planck’s con-
stant". We also write

vx
2 = v0

2s1 + «d and vy
2 = v0

2s1 − «d, s7d

where the deformation parameter« measures the deviation
from the spherical case which is realized forvx=vy. In terms
of the frequencies, the deformation parameter is given by

« =
svx/vyd2 − 1

svx/vyd2 + 1
. s8d

With these definitions, we obtain the dimensionless Hamil-
tonian expressed in dimensionless variables,

H̃r =
p̃2

2
+

1

2
sx̃2 + ỹ2d +

1

2
«sx̃2 − ỹ2d +

b

Îx̃2 + ỹ2
. s9d

The parameter

b =Îmv0

"

a

"v0
s10d

measures the ratio between the strength of the two-body in-
teractionWsrd and the strength of the one-body confining
potential. The original dependence on four parameters is thus
reduced to the three parameters scaled energy,«, andb.

This reduction of parameters can be carried one step fur-
ther by introducing the coordinates

r̃ = b1/3r sc and p̃ = b1/3psc. s11d

This yields

H̃rs«,b, r̃ ,p̃d = b2/3Hscs«,r sc,pscd s12d

with

Hsc=
psc

2

2
+

1

2
sxsc

2 + ysc
2 d +

1

2
«sxsc

2 − ysc
2 d +

1

Îxsc
2 + ysc

2
.

s13d

Using Eqs.(6) and (12), we find that the energyEr of the
relative subsystem scales according to

Esc= b−2/3
Er

"v0
. s14d

Since we will consider only the scaled dynamics of the rela-
tive subsystem described by the HamiltonianHsc, we sup-
press the index “sc” in the following.

According to the scaled Hamiltonian(13), the dynamics
of the relative subsystem depends only on the deformation
parameter« and on the scaled energyEs;Escd; see Eq.(14).
Thus the original problem with four parameters is reduced to
a problem with two parameters. For a given deformation of
the harmonic oscillator the dynamics depends on the scaled
energy only. We notice that

E =
1

m1/3v0
2/3

Er

a2/3, s15d

as follows from Eqs.(14) and (10).
For the sake of completeness, we mention that the scaling

procedure(6)–(14) can be extended to any two-body inter-
action potential of the form

Wsrd =
a

rn . s16d

The scaling of the total energyEr of the relative subsystem is
now given by

E = b−2/sn+2d Er

"v0
, s17d

where

b = Smv0

"
Dn/2 a

"v0
s18d

is the dimensionless parameter.

C. Potential energy landscape

The scaled HamiltonianH is equivalent to the Hamil-
tonian for two-dimensional motion of one particle governed
by the effective potential

Vsr d =
1

2
sx2 + y2d +

1

2
«sx2 − y2d +

1
Îx2 + y2

. s19d

The landscape of the effective potentialVsr d=Vsx,yd at fixed
deformation parameter«=0.4 is shown in Fig. 1(a).

The effective potential is characterized by an infinitely
high peak at the origin due to the Coulomb potential
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1/Îx2+y2. For large values ofx andy, the potentialVsx,yd is
dominated by the deformed harmonic oscillator term; see Eq.
(19). The details in the structure of the potential energy land-
scape become clearer when looking at the intersections of the
surfaceVsx,yd with the planesx=0 andy=0, given in Fig.
1(b) and Fig. 1(c), respectively. The counterplay between the
deformed harmonic oscillator and the Coulomb terms in Eq.
(19) gives rise to the appearance of two local minima and
two saddle points in the potential energy surface.

The positions and corresponding energies of the two local
minima shown in Fig. 1(b) are given by

ymin = ± s1 − «d−1/3 and Vmin = 3
2s1 − «d1/3, s20d

while the positions and energy values of the two saddle
points shown in Fig. 1(c) are given by

xsad= ± s1 + «d−1/3 and Vsad=
3
2s1 + «d1/3. s21d

Figure 2 shows the equipotential lines of the effective poten-
tial Vsx,yd.

With increasing energy, the boundary of the equipotential
shape becomes more ellipsoidal, and the size of the repulsive
center decreases. The motion in such a potential is similar to
the one of a particle in an elliptic billiard with a repulsive
center.

D. Poincaré surfaces of section

To study the motion governed by the effective potential
(19), we use the Poincaré surfaces of section. The dynamical
trajectories in the four-dimensional phase spacesx,px,y,pyd
are obtained numerically from the Hamilton equations of
motion. Since the scaled energyE is conserved, we can ex-
press the trajectory in a three-dimensional surface by writing
px as a function of the other variables in Eq.(13),

pxsx,y,pyd = ± Î2E − 2V − py
2. s22d

The Poincaré surface of section is then defined as the set of
points at which the dynamical trajectories hit the plane

FIG. 1. The landscape of the effective poten-
tial (19) at fixed deformation parameter«=0.4 is
displayed in(a). (b) and (c) show the intersec-
tions of the surfaceVsx,yd with the planesx=0
andy=0.

FIG. 2. The equipotential lines of the poten-
tial energy surface(19).
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S = hsx,y,pydux = 0j. s23d

A Poincaré surface of section for the scaled energyE=1.5 at
«=0.4 is depicted in Fig. 3. At this deformation, we have
Vmin=1.27 andVsad=1.68; see Eqs.(20) and (21). Thus, the
energy is below the saddle point energy confining the motion
to the sectory.0 (or y,0) around the minimum; see Fig.
2(a).

A large part of the phase space is filled by one chaotic
trajectory shown by the gray area in Fig. 3. The dynamics is
mixed, and the different white areas correspond to regular
trajectories, of which we show four examples in Fig. 3 de-
noted as 1, 2, 3, and 4. Orbit 1 surrounds the elliptic fix point
that corresponds to a bouncing ball motion in they direction
close toy=1. Orbit 4 is the pure one-dimensional motion
along they axis atx=0 andpx=0 that defines the border of
the allowed phase space in Fig. 3. The fixed point close to
orbit 3 corresponds to a banana-shaped orbit in thex-y plane
bouncing fromx<0.4,y<0.7 to x<−0.4,y<0.7; see Fig.
2(a). Orbit 2 is a more complicated three-periodic orbit. A

hierarchy of complicated regular orbits fill the white areas in
Fig. 3 and give rise to a fractal structure of the phase space.

In Fig. 4, we show Poincaré surfaces of section for two
scaled energies above the saddle point energy,E=3 [Fig.
4(a)] and E=10 [Fig. 4(b)]. At both energies, one chaotic
orbit covers most parts of the available phase space. In Fig.
4(b) we also show one regular six-periodic orbit.

In contrast to the previous case, the particle has enough
energy to pass the saddle point, and moves in both of the
regionsy.0 andy,0. This is reflected in the presence of
two ovals in the Poincaré surfaces of section. As expected,
by increasing the scaled energyE, the relative fraction of
chaotic motion decreases. This feature is due to general prop-
erties of the HamiltonianE. Larger energiesE correspond
either to larger absolute values ofx andy, or to higher mo-
mentapx and py. In the first case, the contribution from the
Coulomb potential in Eq.(19) becomes smaller compared
with the contribution from the deformed harmonic oscillator.
Therefore, the dynamics becomes more regular. In the sec-
ond case, higher velocities imply that the dynamics of the

FIG. 3. The Poincaré surfaces of section(23)
for the scaled energyE=1.5,Vsadat «=0.4. Dots
represent one chaotic orbit. A few regular orbits
labeled by digits 1, 2, 3, and 4 correspond to
different initial conditions for the Hamilton equa-
tions of motion.

FIG. 4. The examples of the Poincaré surfaces
of section(23) for the scaled energiesE=3 and
E=10 above the saddle point energy(21) at de-
formation «=0.4. As the energyE increases, the
fraction of chaotic parts of phase space decreases.
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system is less sensitive to the structure of the effective po-
tential (19); see Fig. 1.

E. Dependence of the chaoticity on the deformation

To investigate the effect of the one-body potential on the
chaoticity, we study the dependence of chaotic trajectories in
the phase space(13) on the deformation parameter«.

By definition (8), « measures the ratio between thex and
y axes of the ellipsoidal equipotential shapes of the potential
energy surface(19); see Fig. 2. For example, shapes with
1:1,2:1, and 3:1ratios are obtained for«=0, 0.6, and 0.8,
respectively. For«=0, i.e., vx/vy=1, the dynamics of the
relative subsystem(13) is regular because we have spherical
symmetry. The square of the angular momentum is the sec-
ond constant of motion. Remarkably, a second constant of
motion also exists at the deformation«=0.6, i.e., for the 2:1
shape of the oscillator,vx/vy=2. This constant of motion is
related to the Runge-Lenz vector and was analytically con-
structed in Ref.[22]. In our notation it reads

I = ypxpy − xpy
2 + y2x −

x
Îx2 + y2

. s24d

Thus, the important question arises whether integrability is
restricted to these two deformations, or if a second constant
of motion exists at other deformations as well. Since the
motion is regular at 1:1 and 2:1 deformations, the 3:1 de-
formation is the first natural case to look for regular motion.
To illustrate the dependence of the dynamics(13) on the
deformation parameter«, we work out the Poincaré surfaces
of section for four values of« at fixed scaled energyE=3, as
shown in Fig. 5. This value of the scaled energy is above the
saddle point energy(21) for every«P f0,1g.

It is reassuring for our numerics that it reveals a com-
pletely regular phase space for«=0 and«=0.6, i.e., for 1:1
and 2:1 ratios of thex and y axes. The 3:1 deformation
corresponds to«=0.8, and the Poincaré surface of section is
shown in Fig. 5(d). Is there a second constant of motion in
this case or not?—as the phase space is mostly regular, one
is, at first sight, tempted to expect the presence of a second

constant of motion. However, there is indeed chaotic motion
in a part of the phase space, excluding a second constant of
motion at this deformation parameter. By constructing the
Poincaré surfaces of section for the4:1,5:1,6:1,etc., ra-
tios, we find that the degeneracy of the HamiltonianH aris-
ing at integer frequency ratiosvx/vy leads to the relatively
large regularity of the phase space, but chaotic regions exist
for all studied deformations.

It therefore seems unlikely that a second constant of mo-
tion exists for shapes other than 1:1 and 2:1. Thus, we con-
clude from our numerics that the phase space comprises a
mixture of chaotic and regular orbits for all deformations,
except 1:1 and 2:1. To characterize the classical dynamics,
we numerically calculate the relative weight of chaotic re-
gions in the totally available phase space(13). We introduce
a chaoticity parameterq which measures the ratio between
the area covered by chaotic trajectories and the total area of
allowed phase space in the Poincaré surface of section. The
two limits q=0 andq=1 correspond to completely regular
and chaotic dynamics, respectively.

In Fig. 6, the chaoticity parameterq=qsE,«d of the clas-
sical phase space is displayed as a function of the deforma-
tion parameter« at fixed scaled energyE=3.

At «=0 and«=0.6 the motion of the system(13) is com-
pletely regular such thatq=0 for all scaled energies. The
remarkable feature becoming clear from Fig. 6 is the non-
monotonic dependence ofq=qsE,«d on the deformation pa-
rameter«. Distinct local minima are present at the integer
frequency ratiosvx/vy=3, 4, 5, and 6. A similar result was
found in Ref.[18].

An infinite set of local minima of the functionq
=qsE,«d seems to appear for all integer ratiosvx/vy

=… ,7 ,8 ,9,…. In the limit «→1, the relative fraction of
chaoticity of the classical phase space can be estimated to
q→0.52. The limit «→1 is reached forvx@vy [see Eq.
(8)], which corresponds to quasi-one-dimensional motion
along they axis. On the other hand, putting«=1 in the
Hamiltonian (13) leads to Hamiltonian equations for un-
bounded motion along they axis, which is completely regu-
lar, since any one-dimensional motion is regular. The dynam-

FIG. 5. The dependence of the Poincaré sur-
faces of section(23) on the deformation param-
eter « [Eq. (8)] at fixed scaled energyE=3. We
notice thatE=3 is above the saddle point energy
(21) for every «P f0,1g. In the cases«=0 (1:1
deformation), and «=0.6 (2:1 deformation), the
classical phase space is regular due to the pres-
ence of second constants of motion, the square of
the angular momentum and Eq.(24), respec-
tively. For the deformation parameter«=0.8 cor-
responding to the integer frequency ratiovx/vy

=3 (3:1 deformation), the classical phase space
is mostly regular due to the degeneracy of the
effective potential(19) for integervx/vy.
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ics in the quasi-one-dimensional case is thus quite different
from the dynamics in one dimension. In a similar way non-
integrability is introduced by accounting for the third dimen-
sion in a quasi-two-dimensional system[21].

Another interesting feature visible in Fig. 6 is the behav-
ior of the parameterq near the global minimum at«=0.6. We
have checked thatq=qsE,«d in this region is a smooth func-
tion of the deformation parameter«. Thus, the Kolmogoroff-
Arnold-Moser theorem[1] can be used to study the transition
from regularity to chaos at this value of the deformation
parameter. Of course, this also applies to the more trivial
case of«=0.

F. Dependence of the chaoticity on the scaled energy

Investigating the dependence of chaotic motion on the
scaled energyE,Er /a2/3 requires us to simultaneously study
the role of the relative energy in the two-body system,Er,
and the dependence on the strengtha of the two-body inter-
action.

In Fig. 7 we show how the degree of chaoticity depends

on the scaled energyE at the two deformations«=0.4 (left-
hand figure) and«=0.55(right-hand figure). Theq values are
numerically calculated at energies marked in the figure.

An important structure of the dynamics governed by the
HamiltonianH is borne out in Fig. 7: Below the saddle point
energy (marked by an arrow) most orbits are regular. The
corresponding motion is restricted to the area around one
local minimum; see Fig. 2(a). As the energy is increased to
values above the saddle point, the particle can move in the
entire plane, and an ever larger fraction of chaotic orbits
appears. The chaotic dynamics has a distinct maximum for
an energy just above the saddle point energyVsad. When the
energy is increased even more, the effect due the Coulomb
interaction in Eq.(19) becomes less important, and the area
of regular orbits increases. We notice that the scaled energy
becomes larger either with growing total energyEr of the
relative subsystem or with decreasing strengtha of the Cou-
lomb interaction; see Eq.(15).

For a fixed value of the total energy, changes in the scaled
energy are due to varying strengtha of the two-body inter-
action. The noninteracting case then corresponds toa→0,

FIG. 6. The dependence of the chaoticity pa-
rameterq=qsE,«d on the deformation parameter
« at the scaled energyE=3.Vsads«d. Local
minima at 0.8, 0.88, 0.92, and 0.97 correspond to
the integer frequency ratiosvx/vy=3, 4, 5, and 6,
respectively. In the limit«→1, the chaoticity pa-
rameterq approaches the value 0.52. The stars
mark the numerically calculated values ofq; the
solid line is a spline interpolation to guide the
eye.

FIG. 7. The ratioq=qsE,«d between the area
of chaotic regions and the total area of allowed
phase space in the Poincaré surfaces of section
(23) versus the scaled energyE at fixed deforma-
tion parameter«=0.4 (left) and«=0.55(right). A
similar dependence onE is expected for every
deformation parameter«. With increasing energy
E, the relative fractionq of chaotic orbits de-
creases. The stars mark the numerically calcu-
lated values ofq the solid line is a spline inter-
polation to guide the eye.
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i.e., E→`. In this limit the motion of the two noninteracting
particles is regular at all deformations, as already seen in Eq.
(1). The onset of the two-body interaction is prompted by a
decreasing value of the scaled energy. Figure 7 shows how
chaos smoothly sets in with increasing strength of the two-
body interaction at both deformations. At the special defor-
mations«=0 and«=0.6, the motion is regular for all values
of the scaled energy. In those cases the onset of the strength
of the two-body interaction has no impact on the dynamics
which remains regular.

III. QUANTUM MECHANICAL CASE

We now address the quantum mechanical manifestation of
classical chaos for our system. In Sec. III A, we set up the
Hamilton operator and draw certain conclusions for the
quantum statistics. After discussing scaling properties in Sec.
III B, we sketch the numerical computation of the spectra in
Sec. III C. We investigate the spectral statistics in Sec. III D.

A. Hamilton operator and quantum statistics

The Hamilton operatorĤ corresponding to the classical
system (1) in the center-of-mass coordinates decouples

analogously to the classical case,Ĥ=ĤR+Ĥr, where the

center-of-massĤR and the relativeĤr Hamilton operators
are quantized versions of the corresponding classical Hamil-
tonians (2) and (3). Thus, the wave function of the total
two-body system can be written as the productQsr 1,r 2d
=QRsRdQrsr d of the wave functionsQR and Qr for the
center-of-mass and the relative subsystems, respectively. The
total energy is the sumEqm=Eqm,R+Eqm,r where the center-
of-mass energyEqm,R and the relative energyEqm,r are found
from

ĤRQRsRd = Eqm,RQRsRd,

ĤrQrsr d = Eqm,rQrsr d. s25d

Obviously, we have

Eqm,R = sKx + 1
2d"vx + sKy + 1

2d"vy s26d

for the center-of-mass energy with two good quantum num-
bersKx and Ky. We eliminate this integrable part from our
consideration, and concentrate on the study of the energy
spectrumEqm,r of the relative subsystem in Eq.(25) at fixed
quantum numbersKx,Ky.

So far, we have not taken the spinss1 ands2 of the par-
ticles into account. However, this has to be done to under-
stand the quantum statistics of our problem. As there is no
coupling between the orbital and the spin motions, we can
write the total wave function in the form

Csr 1,s1;r 2,s2d = QRsRdQrsr dFss1,s2d, s27d

where Fss1,s2d is the spin wave function. To discuss the
quantum statistics of the two interacting particles, we distin-
guish bosons and fermions. First, for two bosons,
Csr 1,s1; r 2,s2d should be symmetric under interchange of

the particles 1 and 2sr 1↔ r 2,s1↔s2d. Since in this case the
center-of-mass functionQRsRd and the spin wave function
Fss1,s2d are always symmetric under the interchange of two
particles, the relative functionQrsr d must be also symmetric,
i.e., have positive parity,Qrs−r d=Qrsr d. Second, in the case
of two interacting fermions the total wave function
Csr 1,s1; r 2,s2d must be antisymmetric, which means that if
the spin functionFss1,s2d is symmetric the relative function
Qrsr d must be antisymmetric, i.e., have negative parity,
Qrs−r d=−Qrsr d.

The parity of the relative functionQrsr d defines the sym-
metry properties of the total wave function function
Csr 1,s1; r 2,s2d. As we will see below, for the Coulomb in-
teraction(or any other purely distance dependent interaction)
the eigenstates of the relative subsystem separate into solu-
tions with negative and positive parity, respectively.

A comment on possible experimental study of the energy

spectrum for the two-body interacting systemĤ is in order.
Mostly, one measures the electric dipole radiation of the sys-
tem. The intensity is proportional to the square of the center-
of-mass vectorR. As the quadratic confining potential for the
center-of-mass subsystem does not affect the relative dynam-

ics, the excitation spectrum of the total two-body systemĤ
is defined only by the excitation of the center-of-mass sub-
system. This is true for every two-body interaction between
the particles. Hence, one cannot measure the energy spec-
trum of the relative subsystem by electric dipole transitions.
Only by measuring transitions with higher multipolarities,
information about the influence of the mutual interaction be-
tween particles on the two-body energy spectrum can be ex-
tracted; see Refs.[23,24].

B. Scaling properties

Before calculating the quantum mechanical energiesEqm,r,
we compare the scaling properties of the classical Hamil-
tonianHr (3) for the relative subsystem with the correspond-

ing quantum mechanical Hamiltonian operatorĤr. Using
Eqs.(6) and(11), we rewrite the Schrödinger equation in the
same dimensionless variables that we introduced in the clas-
sical case. We have

ĤQrsx,yd = EqmQrsx,yd, s28d

whereQrsr d=Qrsx,yd and

Ĥ = −
1

2

]2

] r 2 +
1

2
sx2 + y2d + 1

2esx2 − y2d +
b

Îx2 + y2
. s29d

The scaled energy reads

Eqm =
Eqm,r

"v0
. s30d

The parameterb is given by Eq.(10). In contrast to the

classical Hamiltonian(3), the Hamilton operatorĤ does not
scale with the parameterb. However, by exploiting Eqs.(14)
and (13), we can formally achieve one-to-one correspon-
dence with the classical scaled HamiltonianH by puttingb
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=1. The fixing of the parameterb implies that we fix the
number of energy states involved in consideration. Because
of the practical limitation on the size of the matrix consisting

from the matrix elements ofĤ, we cannot consider the semi-
classical limit "→0sb→`d, when the correspondence be-
tween classical and quantum mechanical cases should hold.

C. Computation of the spectra

To obtain the eigenvaluesEqm of the Hamilton operator
(29), we numerically diagonalize the problem(28). As basis
wave function, we choose the eigenfunctions of the de-
formed harmonic oscillator,kx,yunx,nyl, that is, the exact

eigenfunctions ofĤ in the absence of the Coulomb interac-
tion, characterized by the good quantum numbersnx andny.
With these basis functions, we compute the matrix elements

knx,nyuĤunx8 ,ny8l.
This choice of basis wave functions implies the following

selection rules for the matrix elements of the Coulomb inter-
action:

Knx,nyU 1
Îx2 + y2Unx8,ny8L Þ 0 if s− 1dsnx+nyd = s− 1dsnx8+ny8d,

Knx,nyU 1
Îx2 + y2Unx8,ny8L = 0 if s− 1dsnx+nyd Þ s− 1dsnx8+ny8d.

s31d

This is so because the Coulomb potential is an even function
of the x and y variables, implying that the matrix element
vanishes if the Hermitian polynomials yield an even or odd
function in the integrand. Thus, a parityg=s−1dsnx+nyd can be
assigned and the(truncated) matrix with matrix elements

knx,nyuĤunx8 ,ny8l is block diagonal ing. According to Eq.
(31), g defines the spatial paritysx→−x, y→−yd of the rela-
tive functionQrsr d=Qrsx,yd.

As discussed above, parity has a different impact for two-
fermion or two-boson systems. We will consider positive and
negative parity separately, but later on we will add the infor-
mation from both spectra when studying statistical proper-
ties.

There are additional constants of motion at the 1:1 and
2:1 shapes in classical mechanics. Correspondingly, an ad-
ditional quantum number exists at each of these two defor-

mations in the quantum case. The Hamilton operatorĤ com-
mutes with the square angular momentum operator in the
circular cases1:1d, and with the operator

Î = y
]2

] x ] y
− x

]2

] y2 + y2x −
x

Îx2 + y2
, s32d

at the 2:1 deformation. However, these additional symme-
tries are not exploited in the calculation of the spectra. This
gives us an extra check of our numerical procedures at the
1:1 and 2:1 shapes(see Fig. 11 below).

In solving the Schrödinger equation(28) numerically, we
use truncated matrices of the size 5553555, constructed

from the matrix elementsknx,nyuĤunx8 ,ny8l. This is done sepa-

rately for positive and negative parity,g= +1 and g=−1,
respectively. The limited sizes of the matrices leads to nu-
merical errors in the calculation. To estimate the number of
calculated eigenvalues which can be used with sufficiently
high precision, we compared the results of the computations
carried out with truncated matrices of different sizes. By
comparing the energy eigenvalues from calculations with
3553355 and 5553555 matrices we find that the lowest
72% of the eigenvalues are calculated with an error less than
0.1%. In the calculations presented below we have used the
first 400 energy levels from the totally 555 calculated eigen-
values.

D. Spectral statistics

For systems with two degrees of freedom the relation be-
tween classical and quantum mechanics has been investi-
gated in a large number of cases. The studies confirm the
Bohigas-Giannoni-Schmit conjecture[2–4,6]. It states that
the quantum system should show spectral fluctuations of the
Wigner-Dyson type if the corresponding classical system is
fully chaotic while other spectral fluctuation, often of the
Poisson type, are expected if the corresponding classical sys-
tem is regular. In these cases, the distributionspssd of spac-
ings s between adjacent levels are given by

pssd =
p

2
sexpS−

p

4
s2D and pssd = exps− sd s33d

for Wigner-Dyson and Poisson statistics, respectively. Re-
cently, progress has been made in proving this conjecture
[25,26]. Thus, in our case, we expect that the spectra of the
quantized relative motion show these limits as well.

A more difficult situation arises for mixed classical dy-
namics, since its quantum manifestation is a highly nontrivial
issue. In a rather general form, this is studied in terms of the
Bohigas-Tomsovic-Ullmo model[27] which can be viewed
as an extension of the Bohigas-Giannoni-Schmit conjecture.
Due to the complexity of the classical phase space, no simple
and generic form for the nearest neighbor spacing distribu-
tion can be conjectured. Nevertheless, one often uses the
purely phenomenological Brody distribution[28]

pssd = sq + 1dsqs
q exps− sqs

q+1d,

sq = Gq+1Sq + 2

q + 1
D , s34d

whereGsxd is theG function. Forq=0 andq=1, the Brody
distribution becomes the Poisson or the Wigner-Dyson dis-
tribution, respectively. For values 0,q,1 of the parameter
q, the Brody distribution interpolates between the Poisson
and the Wigner-Dyson distribution. Importantly, one has
ps0d=0 ats=0 for all q.0. This is tantamount to having no
disconnected regions in phase space.

To measure the spectral fluctuations independently of the
level density, one proceeds as follows[2–4,29]. In Fig. 8, the
counting functionNsEqmd is shown for the first 50 positive
parity energy levels calculated at two deformation param-
eters«=0.4 and«=0.55. The counting functionNsEqmd gives
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the number of energy states less than or equal toEqm. One

decomposes the counting function into a smooth partÑsEqmd
and a fluctuating partNflsEqmd, such thatNsEqmd=ÑsEqmd
+NflsEqmd. The derivative of the smooth part is the level

density rsEqmd=dÑsEqmd /dEqm. We fit this smooth part of
the counting function, i.e., the cumulative level density, with
a quadratic polynomial. The fit by quadratic polynomials is
done separately for the positive and negative parity spectra.
The fit is very good; examples are shown in Fig. 8.

The level density is unfolded from the spectra by mapping
the energies Eqm,n onto new energy variablesjn

=ÑsEqm,nd , n=1,2,3,…. The spacings between adjacent lev-
els are the differencessn=jn+1−jn, n=1,2,3,….

For the comparison between empirical or numerical data
with formulas such as Eqs.(33) and(34), one often employs
the cumulative spacing distributions

Fssd =E
0

s

pss8dds8, s35d

which is the probability to find spacings smaller than or
equal tos. Advantageously,Fssd is in contrast topssd inde-
pendent of binning effects.

In Fig. 9 we show the cumulative spacing distribution for
two values of the deformation parameter«=0.4 and «
=0.55 obtained from the numerical calculation. Both
positive-parity and negative-parity states are included in the
distribution function. Fitting the cumulative spacing distribu-
tion with the help of Eqs.(34) and (35), we getq<0.9 for
«=0.4 andq<0.4 for «=0.55.

The resulting nearest neighbor spacing distributionspssd
for these two cases at«=0.4 and«=0.55 are depicted in Fig.
10.

We find that the nearest neighbor spacing distribution is
almost fully compatible with the Wigner-Dyson case for the
spectrum at«=0.4 and that it is between Wigner-Dyson and
Poisson at«=0.55. We conclude that our statistical analysis

FIG. 8. Counting functionNsEqmd for the first 50 levels with
positive parityg= +1, on the left hand side for deformation param-
eter «=0.4, on the right hand side for deformation parameter«
=0.55. The solid lines are the corresponding smooth parts of the
counting function, obtained by fitting a second order polynomial.

FIG. 9. The cumulative spacing distribution
Fssd calculated for the deformation parameters
«=0.4 and«=0.55. The fit givesq<0.9 for «
=0.4 andq<0.4 for«=0.55. For comparison, the
cumulative Poisson and Wigner-Dyson statistics
are also shown as dotted lines.
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is consistent with the expectation from the Bohigas-
Giannoni-Schmit conjecture.

We also constructed the nearest neighbor spacing distri-
bution pssd for two special deformation parameters«=0.0

and«=0.6 for which the HamiltonianĤ commutes with the
square angular momentum operator and with the operator
(32), respectively. Results are presented in Fig. 11. We see
high peaks at small spacingss which can be explained by the
shell structure of the energy levels at both deformation pa-
rameters«. Despite the fact that at these deformations the
classical system is regular, the nearest neighbor spacing dis-
tribution pssd does not follow the Poisson statistics as can be
expected from the Bohigas-Giannoni-Schmit conjecture. The
deviation is originating from the high degeneracies of the
energy levels at these two shapes of the confining potential,
and the deviations from Poisson statistics is similar to what
is well known for the deformed harmonic oscillator potential.

We want to settle with this qualitative observation. A
more quantitative comparison between the classical and the
quantum mechanical results would be very difficult, because

it would require a much more detailed prediction for the
spacing distribution. Here, we stress once more that the
Brody distribution is purely phenomenological. It is encour-
aging that it yields a satisfactory description of the numerical
data, but we would find it questionable to more deeply inter-
pret the mixing parameterq obtained from the fit. Moreover,
the limited energy window of the quantum mechanical cal-
culation also severely limits the possibility for quantitative
comparison between classical and quantum mechanical
cases.

IV. SUMMARY

In an attempt to achieve some deeper understanding of
how chaos emerges in interacting many-body systems, we
investigated the simplest nontrivial many-body system. We
studied two particles in two dimensions subject to a confin-
ing one-body field and to a two-body interaction. The system
has four degrees of freedom, and is in general quite compli-
cated. In order to simplify, we assumed the one-body field to

FIG. 10. The nearest neighbor spacing distri-
bution pssd for two values of deformation param-
eter«=0.4 and«=0.55, obtained from the numer-
ics (histograms). The lowest calculated 400
positive-parity and negative-parity energy states
are included. The solid lines show the Brody dis-
tributions resulting from the fit of the cumulative
spacing distributions. For comparison, the Pois-
son and the Wigner-Dyson spacing distributions
are also shown as dotted lines.

FIG. 11. Spacing distributionpssd for the de-
formation parameters«=0 and«=0.6 both corre-
sponding to classically regular motion.
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be a deformed harmonic oscillator, and the two-body inter-
action to be a Coulomb interactiona / r, where we treated the
strengtha as a parameter. Due to the harmonic character of
the confining potential, only the relative subsystem can give
rise to chaotic motion, while the center-of-mass dynamics is
always regular. We employed center-of-mass coordinates to
reduce the total four-dimensional dynamics of the interacting
two-body system to the two-dimensional dynamics of the
relative subsystem.

The relative dynamics is defined by the frequenciesvx
andvy of the deformed harmonic oscillator, by the strength
a of two-body interaction, and by the total energyEr of the
relative subsystem. We have shown that for the Coulomb
interaction(or for any other purely distance dependent inter-
action) the relative HamiltonianHr can be scaled[see Eqs.
(3)–(13)]. The scaling dynamics(13) depends only on the
scaled energyE (14) and on the deformation parameter« (8),
which measures the relation between the frequenciesvx and
vy. The scaling of the energy implies that the dynamics does
not depend independently on the(relative) energyEr and on
the strengtha of the two-body force, but on the combined
relationE,Er /a2/3.

The classical phase space of the relative subsystem shows
a rich structure with mixed dynamics of regular and chaotic
trajectories. The dynamics was studied by numerically solv-
ing the classical Hamiltonian equations of motion, and by the
construction of Poincaré surfaces of section. The fraction of
chaotic orbits in the allowed phase space,q, was studied for
different values of the two independent parameters, deforma-
tion and scaled energy.

The degree of chaoticity was found to increase as the
strength of the two-body interaction was increased(or as the
relative energy decreased). However, the explicit shape of
the one-body field(deformed harmonic oscillator) was found
to play a most important role. In particular, since the motion
in the circulars1:1d and in the 2:1 shapes is integrable, the
dynamics is always regular, independent of the strength of

the two-body interaction. We also found local minima of the
degree of chaoticity[as measured by the parameterq
=qsE,«d] at deformations of the harmonic oscillator corre-
sponding to integer values ofvx/vy; cf. Refs.[18,19].

For small values of the scaled energy the motion was
found to be near regular for all shapes. The motion is then
confined around one of the two local minima in the potential
energy surface of the relative motion coordinates. As the
scaled energy is increased to values close to the saddle point
in the potential energy, the size of the chaotic phase space
takes a maximum. The size of the chaotic phase smoothly
decreases as the scaled energy increases. For very large val-
ues of the scaled energy, corresponding to very small values
of the strength of the two-body interaction, the motion ap-
proaches regularity.

The corresponding quantum mechanical problem was also
investigated. The excitation of the center-of-mass subsystem
could be characterized by two good quantum numbers which
are the quantum numbers of the deformed harmonic oscilla-
tor operator. Therefore, quantum chaos for the interacting
two-body system could appear only due to dynamics of the
relative subsystem.

To estimate statistical fluctuations in the energy spectrum
of the relative subsystem we solved numerically the corre-
sponding Schrödinger equation. After unfolding the energy
spectrum, the nearest neighbor spacing distribution, and the
corresponding cumulative distribution, were studied.

Very recently, we became aware of the very recent work
of Ref. [19] that already contains some of the results which
we also obtained in the quantum mechanical case.
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